SUBSTITUTION REACTIONS OF IF

H.-J. Frohn, M. Maurer and W. Pahlmann University of Duisburg, Bismarckstr. 90, D-4100 Duisburg 1

Using silyl protected organic hydroxo compounds substitution of fluorine in ${\rm IF}_5$ is successful.

Reacting IF_5 with $\text{Si}(\text{OCH}_3)_4$ in CH_3CN or SO_2 using different molar ratios it was shown that in the series $\text{IF}_{5-n}(\text{OCH}_3)_n$ only the first member $\text{IF}_4(\text{OCH}_3)$ (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound $\text{IF}_2\text{O}(\text{OCH}_3)$ under elimination of CH_3OCH_3 . With n=4,5 only redox reaction products could be isolated.

IF $_2$ O(OCH $_3$) can also be obtained by treating IF $_4$ (OCH $_3$) with (CH $_3$) $_6$ Si $_2$ O. Similarly reaction of IF $_5$ with the disiloxane represents a new method to win IOF $_3$. Excess of the oxygen transfer reagent leads to formation of IO $_2$ F and I $_2$ O $_5$. An other oxo compound, IO(CH $_3$ COO) $_3$, can be prepared by disolving IF $_5$, IOF $_3$ or IO $_2$ F in acetic acid anhydride.

Reactions of IF₅ with trimethylsilyl protected fluorinated benzoic acids R_fCOOSi(CH₃)₃ (R_f = C₆F₅, 4-H-C₆F₄) appeared to be independent of the educts' molar ratios because the only products are IF(R_fCOO)₄.

In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl)pinacolate, and in smooth reactions we yielded IF $_3[{\rm OC(CH}_3)_2^{-C(CH}_3)_2^{\rm O}]$ and IF $[{\rm OC(CH}_3)_2^{-C(CH}_3)_2^{\rm O}]_2$, in which iodine is part of five membered heterocyclic rings. The $^{19}{\rm F-nmr-spectra}$ are consistent with the diolate occupying the axiale and equatorial positions.

An extension of the silyl method is the new synthesis of ${^{C}}_{6}{^{F}}_{5}{^{IF}}_{4}$ which could be obtained in the smooth reaction of ${^{IF}}_{5}$ with stochiometric amounts of ${^{Si}}({^{C}}_{6}{^{F}}_{5})_{4}$.